

Software Engineering:

Testing workflow

Original version: Fulvio Sbroiavacca (https://tinyurl.com/sw-testing)

Tanslated and adapted by Mario Cimino

What is the purpose of the testing

workflow?

• The purpose is not to show that the software is bug-free (it is

unrealistic)

• The purpose is to find as many errors as possible

• For this purpose, the code should be tested by a different team

(testing team) w.r.t. the team that produced it (implementation team)

Levels and operations of testing

Testing is carried out at various levels for distinct operations:

• Unit test

a unit is the smallest block of software that it makes sense to test, (e.g.

a single low-level function that is checked as a stand-alone entity)

• Module test

a module is a collection of interdependent units

• Subsystem test

a subsystem is a significant aggregate of modules often designed by

different teams; there may be interface problems that need to be fixed

• System or integration testing

it is the complete product test

Operations of testing

• -test

- the system is developed for a small group of customers

- the system is placed in its final environment and tested with the data

on which it will normally have to operate

• -test

- the system is distributed to a community of users

- the system is tested by several users, who use it and provide their

observations and the errors found

• Benchmark

- the system is tested on standardized data in the public domain for

comparison with other equivalent products on the market

- it can be requested by contract

• Stress testing

- is checks how the system behaves when it is overloaded, bringing it

to the limit

- the stress test allows you to cause an error and verify that the system

fails in an acceptable way (fail-soft)

Testing and Debugging

• Testing and debugging are two different concepts

• Testing detects the presence of errors

• Debugging consists in the localization of the error, its analysis

and its correction

• Regression testing is performed after debugging

• It verifies the behavior of the module that has been corrected

w.r.t. the cooperating modules

• It makes sure the correction of the error has not introduced new

errors

Error distribution

• Errors tend to concentrate in certain modules, generally the more

"complex" modules

• A module with many errors should be checked carefully: it will

probably contain more errors

• According to some statistical studies, the probability that there are

other "latent" errors increases with the number of errors already

found according to a "logistic" curve

Error distribution

• Probability of existence of other errors than those found

 Errors already found

Errors introduced by maintenance

• In the maintenance activity, aimed at evolutive changes (new

customer needs) and at correcting errors, new errors are introduced

• Many decisions initially made by programmers are not

documented, they are not evident from the code; other decisions

made later in the modification phase tend to be forgotten by authors

and unknown to others

• To modify a part of code written by others, or simply "dated", with

the aim of eliminating errors, easily leads to introduce further errors

• The typical curve of errors as a function of maintenance time often

tends to follow a close-to-parabolic curve

• initially there is a reduction in the number of errors; as

maintenance time passes, continuous interventions tend to introduce

lots of new errors

• When a module is subject to continuous maintenance, a redesign

should be scheduled to optimize maintainability and extensibility

Error distribution

Errors introduced by maintenance

 Time of maintenance

Testing strategy

• Like design, testing can also be carried out top-down or bottom-up

BOTTOM-UP

TOP - DOWN

 Bottom-up testing

• First, the “lowest level” modules in the hierarchy produced by the

design are tested; these are the smallest and most basic units of the

program

• When the smallest components are correct, the next level of

composition is tested, using the functionality of the previous level

• Progressively, the entire system is tested

• This approach has some issues:

- drivers are needed, i.e. auxiliary software that simulates the call to

a module by generating data to be passed as parameters

• - drivers replace the part of the code not yet integrated in the tested

portion of the program: the top of the module hierarchy

•

Bottom-up testing:

advantages and disadvantages

• The integration and testing process is intuitively easier to implement

• The later a bug is discovered, the more expensive it is to fix it, as it

requires fixing it usually with a leaf module, and its partial re-testing,

up to the modules where the bug was found

Top-down testing

• Initially, the module corresponding to the root is tested, without using

the other modules of the system

• Simulators, called stubs, are used instead of the other modules of the

system

– these are elements that can return random results

– request the data from the tester

– can be a simplified version of the module

• After testing the root module of the hierarchy, its direct children are

integrated

• – simulating their descendants by means of stubs

• This continues until all the leaves of the hierarchy are integrated.

 Top-down testing: advantages and

disadvantages

• The costliest errors to fix are discovered first

• This is particularly useful if the design is also top-down and the

design, implementation and test workflows partially overlap:

– a design error at the top of the hierarchy can be discovered and

corrected before the bottom is designed

• An incomplete but functioning system is available at all times

• Stubs can be expensive to create

What is the best testing strategy?

• A compromise solution is usually adopted between the two strategies,

to mitigate the drawbacks that each solution presents

• It is not convenient to integrate as many modules as possible at each

step

– for example, in a bottom-up strategy, testing the children of a

module and then integrating them all together with the parent to test:

this leads to broken code, without a clear idea of where the error is

• It is convenient to introduce the tested modules one at a time

– this way it is possible to locate errors better

• In general it is more convenient to carry out frequent and short tests

Static checks

• The critical point of the test is represented by the cost

– to reduce it, to improve the relationship between the cost and the

power of the test, or to support the test with other verification

techniques

• One form of static verification is code inspection

• It allows to identify between 60% and 90% of errors that would

otherwise only be found during testing with often higher costs

• Inspection can also be performed by a specialized team, having the

specification document, whose task is to report the errors to the

programmers, who will then fix them

• The coding environment normally provides automatic tools that

analyze the code indicating errors (for example, a call to a function

with the wrong number of parameters)

Testing

• Code inspection alone is obviously not enough

– it does not intercept errors due to the execution of programs

• The modules have to be run on data samples, observing the resulting

behavior

• Testing has two problems

– It is never exhaustive, therefore it does not prove the correctness of

the code

– It is expensive, in terms of machine use and human time

Test-cases

• To carry out a test it is necessary to develop a set of test-cases, each

including:

– input data (test-data) for the module to be tested

– description of the function internal to the module

–output expected from the function

• A test-case represents a characteristic, a requirement, conforming to

the specifications and it is used as a unit to construct a test

• It is completed by a set of metadata

– status (approved, rejected, modified)

– context

– link to specification

• – …

How do you build a test case?

• To build a test-case it is necessary to know the correct output for a

certain input of the function under examination

• It should be taken from the specifications and documents

produced by the design workflow

• At the end of the input execution, the output is stored with the test-

case and is compared with the expected output

• The test must be repeatable

– for the test phases that occur later in the life of the software

How to choose the input?

• The first idea is to generate the input randomly

• This technique has the disadvantage of not being very uniform for

small samples

– to have reliability you need to generate a lot of test-data

• Better input selection criteria are needed

• The test team has to decide the characteristics of the test data on the

basis of:

• – the program,

• – the specifications,

• – the experience

Software

specifications
Software

Test data

specifications

Experience

Test - case

Test-case generation -

Testing methodologies

• Black-box testing

– The specifications of the input data are achieved only from the

specifications of the program

– Without considering the code

• It is normally used for the first tests

• It has the advantage of being accessible to the customer (who does not

see the code)

• Structural testing

• – You derive the specifications of the test data by looking at the code

• It is generally better than the black-box testing

Black box testing

• The choice of input data is based only on the specifications of the

program

– each function is matched with a more or less formal description of

its correct inputs, the output that should be emitted and the function

itself

– for example, a function that returns the date accepts as input the day,

the month in the respective ranges of 1:31, 1:12

• The idea of black-box testing is to partition the set of admissible

inputs into equivalence classes so that within each class, each data

has the same testing power

• Experience determines the selection criteria:

– at least one value inside each class

– all boundary values

Black-box testing and equivalence classes

• Some criteria for determining the equivalence classes

• For a variable v defined in an interval a…b there are three classes:

v < a; a ≤ v ≤ b; v ≥ b;

• For integer variables there is only one class

• – experience suggests to use also the value 0 and a negative value

• For alphanumeric strings, the determination of classes and boundary

values depend on the restrictions on the format of the string

– for example: the empty string, the one containing only characters,

the one containing numbers, etc.

• One problem with this method

• – the combination of test data for all input components leads to a huge

number of test cases

Structural testing

• The choice of input is based on the structure of the program

– the control flow of the program is determined and expressed in the

form of a flow-chart

• The idea of Structural Testing is to use test data that leads to all

possible computations

• Data combinations are searched for all path combinations in the flow-

chart

• In the case of cycles, at least two test data are taken

– one who runs the loop

– and one that doesn't do it

Types of Tests

example of structural test

• It is conducted according to the structure of

the system

– the flow of control is determined in the

form of a flow-chart

– using test data leading to all possible

combinations of paths in the flow-chart

• E.g. it can be used in the test of web sites

– applied to pages

– verifying all the paths through the links

Automatic tools (Test Automation)

• Testing can be streamlined using automated testing tools

• These tools provide several supports, essential for the repeatability of

the tests

– Management of test cases

– Test-data management

– Storage of the tests carried out

– Analytical reporting

• Automated testing cannot always fully replace manual testing

– some checks are more effective if performed manually

(verification of the graphic layout and usability of the product)

Test Automation cases

• Functional tests of a product

– need to repeat the same test many times

– different values of the input data

– different configurations

• New product releases

– check that the changes made have not introduced regressions

• Manual testing makes the process particularly expensive

– cost and time constraints lead to non-execution of tests

compromising the quality of the product

• Automating testing drastically reduces its cost

– increases the initial design cost, which is however returned by the

time savings in the numerous automatic re-runs of the test cases

– repetitive verification operations easily lead to human errors; the

automatic test performs the same operations several times with

accuracy and precision

Simulators

• The most difficult software to test concerns exceptional or dangerous

situations: in these cases, simulators of the environment in which the

software will operate are used

• A simulator is an auxiliary program

(which will then not be used at the end of the development process)

that mimics the actions of another program or hardware or

environment behavior:

– it is used to test products whose malfunction can cause damage or

(e.g. a program to operate a nuclear reactor)

– also serves to test the system under particular load conditions

(stress-testing), difficult to obtain if not in particular conditions of the

final environment

• The construction of simulators obviously has a significant impact on

the cost of the finished product

